
Spurious Trigger Term Structure

- Look at TTK(1,1.5) on TFW with reference to beam structure.
 - TTK(1,1.5) rate on A/O term is ~2k Hz at 500Hz L1 Trigger
- Find 2 components of spurious trigger
 - In the middle of 2nd and 3rd Gap (None in the Sync Gap).
 - In the first 4-5 396ns-bunch crossing after all gaps, only when DAQ is running.

Makoto Tomoto 2003/2/4

TTK Term Rate

	Zero bias at 500 Hz L1	Zero bias with paused
TTK(2,3) on A/O page	450 Hz	130 Hz
TTK(2,3) on Spec. Trig. page	120 Hz	$0 \sim 0.4 \text{ Hz}$
TTK(2,3) Trigger Term #70	10 ~ 12 Hz	$0 \sim 0.4 \text{ Hz}$
TTK(1,10) Trigger Term #72	$7 \sim 10 \text{ Hz}$	$0.7 \sim 2.5 \text{ Hz}$

^{*} When we applied max. discriminator thresholds, all rates went down to ~ 0.0 Hz.

- Why are TTK rates so high?
- Why are TTK rates on the A/O page much higher then ones on the specific trigger page?
- Why are TTK rates with readout different from ones with paused?
- The spurious triggers are generated at the AFE level.
 - The firmware of the L1CTT chain does not create high trigger rate.

Makoto Tomoto 2003/2/4